Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1181562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323908

RESUMO

The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties.

2.
Plants (Basel) ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840223

RESUMO

Grapevine (Vitis vinifera L.) is one of the most important crops in the world due to its economic and social impact. Like many other crops, grapevine is susceptible to different types of diseases caused by pathogenic microorganisms. Grapevine leafroll-associated virus 1 (GLRaV-1) is a virus associated with grapevine leafroll disease and it is considered at the national and European level as a pathogen that must be absent in propagative plant material. For this reason, the availability of specific, sensitive and reliable detection techniques to ascertain the sanitary status of the plants is of great importance. The objective of this research was the development of a new GLRaV-1 detection method based on a TaqMan quantitative real-time RT-PCR targeted to the coat protein genomic region and including a host internal control in a duplex reaction. To this end, three new GLRaV-1 full genomes were recovered by HTS and aligned with all sequences available in the databases. The method has been validated following EPPO standards and applied for the diagnosis of field plant material and transmission vectors. The new protocol designed has turned out to be highly sensitive as well as much more specific than the current available methods for the detection and absolute quantitation of GLRaV-1 viral titer.

3.
Front Plant Sci ; 13: 1077710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570937

RESUMO

Introduction: Most of elite cultivated grapevine varieties (Vitis vinifera L.), conventionally grafted on rootstocks, are becoming more and more affected by climate changes, such as increase of salinity. Therefore, we revisited the valuable genetic resources of wild grapevines (V. sylvestris) to elaborate strategies for a sustainable viticulture. Methods: Here, we compared physiological and biochemical responses of two salt-tolerant species: a wild grapevine genotype "Tebaba" from our previous studies and the conventional rootstock "1103 Paulsen". Interestingly, our physio-biochemical results showed that under 150mM NaCl, "Tebaba" maintains higher leaf osmotic potential, lower Na+/K+ ratio and a significant peaked increase of polyphenol content at the first 8h of salinity stress. This behavior allowed to hypothesis a drastic repatterning of metabolism in "Tebaba's" roots following a biphasic response. In order to deepen our understanding on the "Tebaba" salt tolerance mechanism, we investigated a time-dependent transcriptomic analysis covering three sampling times, 8h, 24h and 48h. Results: The dynamic analysis indicated that "Tebaba" root cells detect and respond on a large scale within 8h to an accumulation of ROS by enhancing a translational reprogramming process and inducing the transcripts of glycolytic metabolism and flavonoids biosynthesis as a predominate non-enzymatic scavenging process. Afterwards, there is a transition to a largely gluconeogenic stage followed by a combined response mechanism based on cell wall remodeling and lignin biosynthesis with an efficient osmoregulation between 24 and 48 h. Discussion: This investigation explored for the first time in depth the established cross-talk between the physiological, biochemical and transcriptional regulators contributing to propose a hypothetical model of the dynamic salt mechanism tolerance of wild grapevines. In summary, these findings allowed further understanding of the genetic regulation mechanism of salt-tolerance in V. sylvestris and identified specific candidate genes valuable for appropriate breeding strategies.

4.
Funct Integr Genomics ; 23(1): 12, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547729

RESUMO

Alpha-galactosidase seed imbibition protein (VvSIP) isolated from Vitis vinifera is up-regulated upon salt stress and mediates osmotic stress responses in a tolerant grapevine cultivar. So far, little is known about the putative role of this stress-responsive gene. In the present study, VvSIP function was investigated in model tobacco plants via Agrobacterium-mediated genetic transformation. Our results showed that overexpression of VvSIP exhibited increased tolerance to salinity at germination and late vegetative stage in transgenic Nicotiana benthamiana compared to the nontransgenic plants based on the measurement of the germination rate and biomass production. High salt concentrations of 200 and 400 mM NaCl in greenhouse-grown pot assay resulted in better relative water content, higher leaf osmotic potential, and leaf water potential in transgenic lines when compared to the wild-type (WT) plants. These physiological changes attributed to efficient osmotic adjustment improved plant performance and tolerance to salinity compared to the WT. Moreover, the VvSIP-expressing lines SIP1 and SIP2 showed elevated amounts of chlorophyll with lower malondialdehyde content indicating a reduced lipid peroxidation required to maintain membrane stability. When subjected to high salinity conditions, the transgenic tobacco VvSIP exhibited higher soluble sugar content, which may suggest an enhancement of the carbohydrate metabolism. Our findings indicate that the VvSIP is involved in plant salt tolerance by functioning as a positive regulator of osmotic adjustment and sugar metabolism, both of which are responsible for stress mitigation. Such a candidate gene is highly suitable to alleviate environmental stresses and thus could be a promising candidate for crop improvement.


Assuntos
alfa-Galactosidase , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , /metabolismo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Galactosidases/genética , Galactosidases/metabolismo , Expressão Ectópica do Gene , Estresse Fisiológico/genética , Água/metabolismo , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Salinidade
5.
J Gen Virol ; 103(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748634

RESUMO

Members of the family Secoviridae are non-enveloped plant viruses with mono- or bipartite linear positive-sense ssRNA genomes with a combined genome of 9 to 13.7 kb and icosahedral particles 25-30 nm in diameter. They are related to picornaviruses and are members of the order Picornavirales. Genera in the family are distinguished by the host range, vector, genomic features and phylogeny of the member viruses. Most members infect dicotyledonous plants, and many cause serious disease epidemics. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Secoviridae, which is available at ictv.global/report/secoviridae.


Assuntos
Vírus de RNA , Secoviridae , Vírus , Secoviridae/genética , Genoma Viral , Vírus/genética , Vírus de RNA/genética , Filogenia , Plantas , Replicação Viral , Vírion/genética
6.
Plant Dis ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823613

RESUMO

Flavescence dorée (FD) and Bois noir (BN) are the principal grapevine yellows diseases in Europe caused by distinct phytoplasmas: FD by 16SrV phytoplasmas (FDp), BN by Candidatus Phytoplasma solani. FDp is spread epidemically by the introduced Nearctic Deltocephalinae Scaphoideus titanus and is listed as a quarantine pest in the European Union (Regulation (EU) 2019/2072). Black Alder (Alnus glutinosa) is a common asymptotic host of 16SrV phytoplasmas in Europe and considered the original host of FDp (Malembic-Maher et al. 2020). Palatinate grapevine yellows (PGY) transmitted from alder to grapevine by the Macropsinae Oncopsis alni (Maixner et al. 2000) is not transmissible by S. titanus, unlike isolates transmitted by the autochthonous Deltocephalinae Allygus spp. and the invasive Orientus ishidae (Malembic-Maher et al. 2020). Germany is considered free from FD in grapevine and from its vector. A single case in a nursery in 2014 was eradicated (EPPO 2017). Since S. titanus was detected in 2016 in the neighboring French Region of Alsace, monitoring of FD was carried out in Germany. It was focused on vineyards within a distance of 100 m from stands of alder trees. A geodata-based risk map (Jalke 2020) was used to identify those plots. All symptomatic vines sampled until September 2020 proved to be infected by BN or, occasionally, by PGY. Eight vines with typical symptoms were sampled in vineyards adjacent to alder stands in the winegrowing region of Rheinhessen in September 2020. Symptoms comprised leaf rolling and discoloration, incomplete lignification, black pustules on shoots, dried inflorescences and shriveled berries. Diseased shoots were black and necrotic in December. Leaf midribs were sampled for total DNA extraction. The phytoplasma 16S rRNA gene was amplified by generic primers R16F2/R2-mod followed by a nested PCR using 16Sr(V) group-specific primers R16(V)F1/R1, and primers R16(I)F1/R1 (Lee et al. 1995) to detect 'Candidatus Phytoplasma solani', associated with BN. While BN was detected in seven vines, one sample tested positive for 16SrV phytoplasma. This result was confirmed by triplex real-time Taq-Man assay based on rpl14 gene sequences (IPADLAB), by multiplex real-time PCR of map locus as well as by Loop-mediated isothermal amplification (LAMP) according to the EPPO diagnostic standard PM 7/079(2) (EPPO 2016). PCR-products of the map- and the vmpA-Gene (Malembic-Maher et al., 2020) were sequenced and compared to reference sequences to distinguish between FD- and non-FD genotypes. The isolate from the diseased vine exhibited 100% identity with map-M38 (Accession No. LT221933), a genotype of the map-FD2 cluster. The same genotype was detected in A. glutinosa and Allygus spp. sampled at the infested site. A 234 bp sequence of the first repeat of the vmpA-gene showed 100% identity with the S. titanus transmitted isolate FD-92 (Accession No. LN680870) of the vmpA-II cluster. It can be concluded, that the 16SrV-isolate detected in a symptomatic grapevine is infected by FD and not PGY. This is the first report of FD in a vineyard in Germany. The infected vine of cv. Silvaner was 25 years old. While infected planting material is an unlikely source of the infection, a transmission of FDp from alder is highly probable. Finding a single FD-infection after several years of testing implies a low risk originating from the wild compartment, but the approach of the vector S. titanus justifies further monitoring activities. The infected vine was eradicated.

7.
Arch Virol ; 165(2): 527-533, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31848707

RESUMO

We present a taxonomic proposal for revision of the family Secoviridae, a taxon of plant viruses in the order Picornavirales. We propose the reorganization of the genus Sadwavirus to create three new subgenera and to update the classification of five existing species. The proposed subgenera are "Satsumavirus" (one species: Satsuma dwarf virus), "Stramovirus" (two species: Strawberry mottle virus and Black raspberry necrosis virus) and "Cholivirus" (two species: Chocolate lily virus A and Dioscorea mosaic associated virus).


Assuntos
Secoviridae/classificação , Secoviridae/genética , Genoma Viral/genética , Filogenia , Vírus de RNA/genética , RNA Viral/genética
8.
PLoS One ; 13(10): e0206010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30376573

RESUMO

RNASeq or double-stranded RNA based approaches allowed the reconstruction of a total of 9 full-length or near full-length genomes of the recently discovered grapevine virus T (GVT). In addition, datamining of publicly available grapevine RNASeq transcriptome data allowed the reconstruction of a further 14 GVT genomes from five grapevine sources. Together with four GVT sequences available in Genbank, these novel sequences were used to analyse GVT diversity. GVT shows a very limited amount of indels variation but a high level of nucleotide and aminoacid polymorphism. This level is comparable to that shown in the closely related grapevine rupestris stem pitting-associated virus (GRSPaV). Further analyses showed that GVT mostly evolves under conservative selection pressure and that recombination has contributed to its evolutionary history. Phylogenetic analyses allow to identify at least seven clearly separated groups of GVT isolates. Analysis of the only reported PCR GVT-specific detection primer pair indicates that it is likely to fail to amplify some GVT isolates. Taken together these results point at the distinctiveness of GVT but also at the many points it shares with GRSPaV. They constitute the first pan-genomic analysis of the diversity of this novel virus.


Assuntos
Variação Genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de Plantas/genética , Vitis/virologia , Sequência de Bases , DNA Viral/genética , Filogenia , Vírus de Plantas/isolamento & purificação , RNA Viral/genética , Recombinação Genética/genética , Transcriptoma/genética
9.
Virus Genes ; 54(5): 737-741, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29995199

RESUMO

A recently described putative foveavirus, grapevine virus T (GVT), was detected in a Slovak grapevine accession (SK704) using high-throughput sequencing, prompting further studies. Full-length genome sequence of isolate GVT-SK704 was determined. Analyses revealed 86.1% nucleotide identity with the Italian GVT isolate, currently the only available nearly complete sequence of GVT in GenBank. A virus-specific RT-PCR assay was developed, which enabled a survey of GVT incidence in grapevine samples from Slovakia and Czech Republic. Unexpectedly, GVT was present in ~ 30% of tested samples. Analysis of complete CP gene sequences of 20 Slovak and Czech GVT isolates detected in the survey revealed relatively high intra-species variability (up to 11.2% nucleotide divergence), suggesting multiple introductions from different sources, possibly over an extended period of time.


Assuntos
Flexiviridae/classificação , Flexiviridae/genética , Variação Genética , Doenças das Plantas/virologia , República Tcheca/epidemiologia , Genoma Viral , Genômica/métodos , Filogenia , Eslováquia/epidemiologia
10.
Biochem Genet ; 56(1-2): 78-92, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29150723

RESUMO

Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants.


Assuntos
Escherichia coli , Germinação , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Vitis/genética , alfa-Galactosidase , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , /genética , Vitis/enzimologia , alfa-Galactosidase/biossíntese , alfa-Galactosidase/genética
11.
J Gen Virol ; 98(4): 529-531, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28452295

RESUMO

Members of the family Secoviridae are non-enveloped viruses with mono- or bipartite (RNA-1 and RNA-2) linear positive-sense ssRNA genomes with the size of the RNAs combined ranging from 9 to 13.7 kb. They are related to picornaviruses and are classified in the order Picornavirales. The majority of known members infect dicotyledonous plants and many are important plant pathogens (e.g. grapevine fanleaf virus and rice tungro spherical virus). This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) report on the taxonomy of the family Secoviridae available at www.ictv.global/report/secoviridae.


Assuntos
Vírus de Plantas/classificação , Vírus de Plantas/genética , Plantas/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Viroses/virologia , RNA Viral/genética
12.
Front Microbiol ; 8: 45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174561

RESUMO

Recent advances in high-throughput sequencing technologies and bioinformatics have generated huge new opportunities for discovering and diagnosing plant viruses and viroids. Plant virology has undoubtedly benefited from these new methodologies, but at the same time, faces now substantial bottlenecks, namely the biological characterization of the newly discovered viruses and the analysis of their impact at the biosecurity, commercial, regulatory, and scientific levels. This paper proposes a scaled and progressive scientific framework for efficient biological characterization and risk assessment when a previously known or a new plant virus is detected by next generation sequencing (NGS) technologies. Four case studies are also presented to illustrate the need for such a framework, and to discuss the scenarios.

13.
Plant Pathol J ; 33(1): 34-42, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28167886

RESUMO

Grapevine rupestris stem pitting-associated virus (GRSPaV) is a worldwide-distributed pathogen in grapevines with a high genetic variability. Our study revealed differences in the complexity of GRSPaV population in a single host. A single-variant GRSPaV infection was detected from the SK30 grapevine plant. On the contrary, SK704 grapevine was infected by three different GRSPaV variants. Variant-specific RT-PCR detection protocols have been developed in this work to study distribution of the three different variants in the same plant during the season. This study showed their randomized distribution in the infected SK704 grapevine plant. Comparative analysis of fulllength genome sequences of four Slovak GRSPaV isolates determined in this work and 14 database sequences showed that population of the virus cluster into four major phylogenetic lineages. Moreover, our analyses suggest that genetic recombination along with point mutations could play a significant role in shaping evolutionary history of GRSPaV and contributed to its extant genetic diversification.

14.
Virology ; 458-459: 106-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24928043

RESUMO

The N-terminal domains of the RNA 2-encoded 2A(HP) proteins of the arabis mosaic (ArMV) and grapevine fanleaf (GFLV) nepoviruses were shown to be highly variable and a hotspot for intra- and inter-species recombination events. Chimeric ArMV-NW clones in which the N-terminal domain of 2A(HP) or the entire 2A(HP) of GFLV isolates replaced the corresponding domains of ArMV retained their infectivity, showing that the 2A(HP) proteins of ArMV-NW and GFLV are exchangeable. ArMN-NW clones with deletions of the N-terminal, core, or C-terminal domains of the ArMV-NW 2A(HP) were infectious in Chenopodium quinoa although viral RNA (especially RNA 2) accumulated at reduced levels. In contrast, deletion of the entire 2A(HP) protein or of the C-terminal two thirds of the protein abolished infectivity of the ArMV-NW clones. These results suggest that multiple functional domains are distributed throughout the 2A(HP) protein and are essential for the accumulation of viral RNA 2.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus do Mosaico/metabolismo , Nepovirus/genética , Nepovirus/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Deleção de Genes , Dados de Sequência Molecular , Vírus do Mosaico/genética , Filogenia , Proteínas Virais/genética
15.
Arch Virol ; 159(3): 607-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24081823

RESUMO

Orchid fleck virus (OFV) is an unassigned negative-sense, single-stranded (-)ssRNA plant virus that was previously suggested to be included in the family Rhabdoviridae, order Mononegavirales. Although OFV shares some biological characteristics, including nuclear cytopathological effects, gene order, and sequence similarities, with nucleorhabdoviruses, its taxonomic status is unclear because unlike all mononegaviruses, OFV has a segmented genome and its particles are not enveloped. This article analyses the available biological, physico-chemical, and nucleotide sequence evidence that seems to indicate that OFV and several other Brevipalpus mite-transmitted short bacilliform (-)ssRNA viruses are likely related and may be classified taxonomically in novel species in a new free-floating genus Dichorhavirus.


Assuntos
Genoma Viral , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética , Análise de Sequência de DNA , Ácaros e Carrapatos/virologia , Animais , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia
16.
Virology ; 446(1-2): 102-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24074572

RESUMO

Regulated processing of nepovirus polyproteins allows the release of mature proteins and intermediate polyproteins. Infectious cDNA clones of the mild NW isolate of arabis mosaic virus (ArMV) and chimeric clones incorporating RNA1 segments of Lv, a severe isolate, were generated. Clones containing the Lv X2-NTB cleavage site were not infectious unless the Lv protease was present. The Lv and NW X2-NTB cleavage sites differ at positions P6, P4 and P2. In vitro, processing at the X2-NTB site was undetectable or reduced in chimeric polyproteins containing the Lv X2-NTB site and the NW protease but was restored when both the Lv protease and X2-NTB site were present. In contrast, cleavage at this site was increased in polyproteins that contained the NW X2-NTB site and the Lv protease. These results show that the ArMV-Lv protease has greater activity and is active on a greater range of cleavage sites than that of ArMV-NW.


Assuntos
Nepovirus/enzimologia , Nepovirus/fisiologia , Peptídeo Hidrolases/metabolismo , RNA Viral/genética , Replicação Viral , Arabis/virologia , DNA Complementar , Dados de Sequência Molecular , Nepovirus/genética , Nepovirus/isolamento & purificação , Peptídeo Hidrolases/genética , Processamento de Proteína Pós-Traducional , Recombinação Genética , Análise de Sequência de DNA
17.
Viruses ; 5(7): 1815-23, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23867805

RESUMO

The complete sequences of RNA1, RNA2 and satellite RNA have been determined for a South African isolate of Grapevine fanleaf virus (GFLV-SACH44). The two RNAs of GFLV-SACH44 are 7,341 nucleotides (nt) and 3,816 nt in length, respectively, and its satellite RNA (satRNA) is 1,104 nt in length, all excluding the poly(A) tail. Multiple sequence alignment of these sequences showed that GFLV-SACH44 RNA1 and RNA2 were the closest to the South African isolate, GFLV-SAPCS3 (98.2% and 98.6% nt identity, respectively), followed by the French isolate, GFLV-F13 (87.3% and 90.1% nt identity, respectively). Interestingly, the GFLV-SACH44 satRNA is more similar to three Arabis mosaic virus satRNAs (85%-87.4% nt identity) than to the satRNA of GFLV-F13 (81.8% nt identity) and was most distantly related to the satRNA of GFLV-R2 (71.0% nt identity). Full-length infectious clones of GFLV-SACH44 satRNA were constructed. The infectivity of the clones was tested with three nepovirus isolates, GFLV-NW, Arabis mosaic virus (ArMV)-NW and GFLV-SAPCS3. The clones were mechanically inoculated in Chenopodium quinoa and were infectious when co-inoculated with the two GFLV helper viruses, but not when co-inoculated with ArMV-NW.


Assuntos
Genoma Viral , Nepovirus/genética , RNA Satélite/genética , RNA Viral/genética , Análise de Sequência de DNA , Chenopodium quinoa/virologia , Dados de Sequência Molecular , Nepovirus/isolamento & purificação , Nepovirus/fisiologia , Filogenia , RNA Satélite/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Replicação Viral
18.
J Virol Methods ; 188(1-2): 21-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23219809

RESUMO

A real-time multiplex RT-PCR has been developed for the simultaneous detection and identification of the major RNA viruses that infect grapevines (Grapevine fanleaf virus, Arabis mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 3 and Grapevine fleck virus). Serial dilutions of infected plant extracts were tested using the new method, and the results were compared with those obtained using a commercially available ELISA and real-time singleplex RT-PCR. The two real-time RT-PCR versions detected up to the same level of dilution and were at least 10,000 times more sensitive than the ELISA. In addition, 158 grapevine plants collected in a survey of the Protected Designation of Origin in Alicante, Spain were compared using the three methods. The results of the molecular methods were very similar, with only four discordant results, and both were able to detect many more infected plants than the ELISA. The high prevalence of Grapevine fleck virus, Grapevine leafroll-associated virus 3 and Grapevine fanleaf virus suggests that the main pathways of viral introduction are infected plant material that has escaped controls and/or uncontrolled traffic of propagating plant material. Real-time multiplex RT-PCR could be used to facilitate a better control of grapevine viruses.


Assuntos
Closteroviridae/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Nepovirus/isolamento & purificação , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Tymoviridae/isolamento & purificação , Vitis/virologia , Closteroviridae/classificação , Closteroviridae/genética , Nepovirus/classificação , Nepovirus/genética , Sensibilidade e Especificidade , Espanha , Tymoviridae/classificação , Tymoviridae/genética , Virologia/métodos
19.
Plant Physiol Biochem ; 47(8): 739-42, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19419883

RESUMO

RNA interference (RNAi) was established in Nicotiana benthamiana plants by introducing constructs containing a defective interfering (DI) sequence from Tomato bushy stunt virus (TBSV) in combination with a conserved sense-sequence from the target Grapevine fanleaf virus (GFLV). Silencing in plants was confirmed by Agrobacterium-mediated infiltration of a GFP-sensor containing the GFLV-derived target sequence. The transgene-induced RNAi led to silencing of the GFP-sensor and GFP fluorescence was absent post-infiltration. In plants without GFP fluorescence after infiltration with the GFP-sensor, siRNA specific to GFP and the target virus sequence could not be detected. In contrast, infiltrated leaves of wild type and transgenic plants showing GFP fluorescence after infiltration revealed accumulation of siRNA specific to the sequence of the sensor. Silencing could be inhibited by co-infiltration using a p19 silencing suppressor construct together with the GFP-sensor, which always resulted in bright GFP fluorescence. In parallel, virus resistance of transgenic Nicotiana benthamiana was investigated via challenge inoculation with GFLV. Our results indicate that efficient RNAi in transgenic plants does not necessarily lead to a detectable accumulation of siRNA.


Assuntos
Inativação Gênica , Doenças das Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Tombusvirus/genética , Vírus Defeituosos/genética , Proteínas de Fluorescência Verde , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Tombusvirus/patogenicidade , Proteínas Virais/genética , Vírus/genética , Vírus/patogenicidade
20.
Arch Virol ; 154(5): 899-907, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350366

RESUMO

The order Picornavirales includes several plant viruses that are currently classified into the families Comoviridae (genera Comovirus, Fabavirus and Nepovirus) and Sequiviridae (genera Sequivirus and Waikavirus) and into the unassigned genera Cheravirus and Sadwavirus. These viruses share properties in common with other picornavirales (particle structure, positive-strand RNA genome with a polyprotein expression strategy, a common replication block including type III helicase, a 3C-like cysteine proteinase and type I RNA-dependent RNA polymerase). However, they also share unique properties that distinguish them from other picornavirales. They infect plants and use specialized proteins or protein domains to move through their host. In phylogenetic analysis based on their replication proteins, these viruses form a separate distinct lineage within the picornavirales branch. To recognize these common properties at the taxonomic level, we propose to create a new family termed "Secoviridae" to include the genera Comovirus, Fabavirus, Nepovirus, Cheravirus, Sadwavirus, Sequivirus and Waikavirus. Two newly discovered plant viruses share common properties with members of the proposed family Secoviridae but have distinct specific genomic organizations. In phylogenetic reconstructions, they form a separate sub-branch within the Secoviridae lineage. We propose to create a new genus termed Torradovirus (type species, Tomato torrado virus) and to assign this genus to the proposed family Secoviridae.


Assuntos
Filogenia , Vírus de Plantas/classificação , Vírus de RNA/classificação , Genoma Viral , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Secoviridae/classificação , Secoviridae/genética , Análise de Sequência de RNA , Sequiviridae/classificação , Sequiviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...